Saturday, January 24, 2009

Prove that tan2(x) + 1 = sec2(x)

Prove that tan2(x) + 1 = sec2(x)

We know that

sin2(x) + cos2(x) = 1

dividing both sides by cos2(x) we get

(sin2(x) + cos2(x))/cos2(x) = 1/cos2(x)

which equals

sin2(x)/cos2(x) + cos2(x)/cos2(x) = (1/cos(x))2

which can be re-written as

(sin(x)/(cos(x))2 + 1 = (1/cos(x))2


We know that tan2(x) = (sin(x)/(cos(x))2

and that (1/cos(x))2 = sec2(x)

So we can write

cot2(x) + 1 = sec2(x)

2 comments:

John Tran said...

there is a typo at the end you meant to say tan not cot

Leslie Lim said...


This is really an interesting topic. Congratulations to the writer. I'm sure a lot of readers having fun reading your post. Hoping to read more post from you in the future. Thank you and God bless!


www.imarksweb.org